Skip to main content
padlock icon - secure page this page is secure

Open Access Fabrication of gold nanoshells for improvement of cell apoptosis and its application in photothermal cancer therapy

Download Article:
(PDF 3,913.6 kb)
For cancer diagnosis and therapeutics, we adopted a novel strategy and established a new approach by using transarterial administration of gold nanoshells on silica nanorattles (GSNs) for multifunctional biomedical application. The GSNs exhibit high biocompatibility and stability in vitro and in vivo. It was found that an arterial administration of GSNs showed six-fold higher efficiency than the venous method. In this study, we found that the system of using GSNs had a high near-infrared (NIR) absorbance and excellent photothermal transfer capability for cancer photothermal therapy (PTT) efficiently. More importantly, the GSN treatment method, involving interventional procedures and nanomaterials, showed great potential to promote tumor apoptosis in all research. Using CT imaging technology, we monitored the volume change of tumors and confirmed cell apoptosis by TUNEL staining and immunohistochemistry. Furthermore, arterial administration of GSNs combined with NIR irradiation was established, and the related proteins was examined by Western blotting. Caspase-3 and 9 showed an high expression level within tumor tissues. Finally, a comparative study of biodistribution and safety was performed in vivo, and the biocompatibility was carefully evaluated. This GSN-based method was ultimately shown to be a promising approach for cancer therapy.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: August 1, 2020

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more