Skip to main content
padlock icon - secure page this page is secure

Open Access Wear resistance of maraging steel developed by direct metal laser sintering

Download Article:
 Download
(PDF 12,118.4 kb)
 
This work presents wear study on maraging steel developed by additive manufacturing using Direct Metal Laser Sintering, utilizing a laser beam of high-power density for melting and fusing the metallic powders. Short aging treatment was given to the specimen prior to the wear tests. The density and the hardness of the 3D printed maraging steel were found to be better than the homogenized-aged 18Ni1900 maraging steel. The wear resistance is an important aspect that influences the functionality of the components. The wear tests in dry condition were performed on maraging steel on pin/disc standard wear testing machine. The design of experiments was planned and executed based on response surface methodology. This technique is employed to investigate three influencing and controlling constraints namely speed, load, and distance of sliding. It has been observed that sliding speed and normal load significantly affects the wear of the specimen. The statistical optimization confirms that the normal load, sliding distance, and speed are significant for reducing the wear rate. The confirmation test was conducted with a 95% confidence interval using optimal parameters for validation of wear test results. A mathematical model was developed to estimate the wear rate. The experimental results were matched with the projected values. The wear test parameters for minimum and maximum wear rate have been determined.

17 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ADDITIVE MANUFACTURING; DIRECT METAL LASER SINTERING; MARAGING STEEL; RESPONSE SURFACE METHOD; SEM; WEAR CHARACTERISTICS

Document Type: Research Article

Publication date: July 1, 2020

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more