Skip to main content
padlock icon - secure page this page is secure

Open Access Synthesis and characterization of boron and phosphorus-containing phenol formaldehyde resin-modified polyurethane composites

Download Article:
 Download
(PDF 46,136.6 kb)
 
Composite films with polyurethane (PU), phenol formaldehyde resin (PFR) and boron, phosphorus-containing phenol formaldehyde resins (P-PFR and B, P-PFR), were synthesized using sol–gel and copolymerization techniques. These composite films were deposited via spin-coating onto an aluminum alloy (AA) for improve the corrosion protection. The effects of different types of PFR on the structural, thermal and mechanical properties and corrosion resistance of the composites were investigated. The structures and morphologies of the composites were investigated by the gel permeation chromatography (GPC), Fourier transform infrared (FTIR), scanning electronic microscopy (SEM) and atomic force microscopy (AFM). It was shown from the dynamic mechanical analysis (DMA) and thermal gravimetric analysis (TGA) that the mechanical and thermal properties of PU were improved by incorporation of PFR, P-PFR and B, P-PFR. In addition, the PU/PFR composites provided an excellent corrosion protection in comparison with PU according to potentio-dynamic and salt-spray analyses.

24 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTI-CORROSION; BORON; PHENOL-FORMALDEHYDE RESINS (PFR); POLYURETHANE (PU)

Document Type: Research Article

Publication date: July 1, 2020

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more