Skip to main content
padlock icon - secure page this page is secure

Open Access Effect of shot peening on very high cycle fatigue of 2024-T351 aluminium alloy

Download Article:
(PDF 5,689.7 kb)
To investigate the influence of shot peening (SP) on very high cycle fatigue (VHCF) performance of 2024-T351, the specimens with three surface conditions were performed under ultrasonic fatigue tests: mechanicallypolished without peening (NP), ceramic shot peening (SP1), steel and glass mixed shot peening (SP2). The roughness, microhardness, residual stress, fractography measurement and scanning electron microscopy (SEM) were applied before fatigue test to characterize the effective layer induced by the peening treatment. For the failed specimens, the fracture surface were analysed using SEM to study the mechanisms of fatigue crack propagation. In addition, the fatigue life curve in ultra-high cycle region continuously decreased in the three series of specimens. However, the experimental results revealed that fatigue strength improvement resulting from shot peening treatment was negligible in very high cycle regime. Furthermore, the stress intensity factor for the surface crack initiation (SCI) and interior crack initiation (ICI) was discussed based on quantitative analysis on the fracture surface. The average values of ΔKfish-eye for NP, SP1 and SP2 specimens are about 2.22, 1.48 and 1.61 MPa ยท m1/2, respectively.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: July 1, 2020

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more