Skip to main content
padlock icon - secure page this page is secure

Open Access Analysis on sliding wear behavior of Al + B4C+ mica hybrid metal matrix composites

Download Article:
(PDF 34,188.1 kb)
In this investigation, wear behavior of hybrid aluminum metal matrix composites (HMMCs) fabricated by stir casting technique is carried out. Boron carbide and Mica particles are added. The Mica percentage varies from 3–5% in steps of 1% with a constant reinforcement quantity of 10% boron carbide. The dry sliding wear experiments are explored on a pin on disc tribometer. The process variables considered for the study are: Mica mass fraction, sliding speed, load and sliding time, and the response analyzed is wear loss. Box-Behnken design is used for conducting the experiments. The result shown proves that 3% of Mica particle inclusion reduces the wear due to the increase in density. Further increase of mica does not improve the wear resistance. ANOVA results indicate that load and % of Mica are the profoundly influencing parameters. The pin surface is analyzed by using a Scanning Electron Microscope.

6 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: July 1, 2020

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more