Skip to main content
padlock icon - secure page this page is secure

Open Access Thermal hazards evaluation of insensitive JEOL-1 polymer bonded explosive

Download Article:
 Download
(PDF 13,209.2 kb)
 
Thermal stimuli is one of the major external stiumuli resulting from an overheated explosion of a munition. In order to evaluate the influence of external thermal stiumuli on the thermal hazards of JEOL-1 (32 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32 wt% 3-nitro-1,2,4-triazole-5-one (NTO), 28 wt% Al and 8 wt% binder system) explosive, accelerating rate calorimeter (ARC) is used to study the adiabatic thermal decomposition properties of JEOL-1 molding powders, and the slow cook-off properties of JEOL-1 are studied by experimental test and numerical simulation. The activation energy Ea , pre-exponential factor A, mechanism function f(α) and self-accelerating decomposition temperature (SADT) of adiabatic thermal decomposition of JEOL-1 molding powders are obtained according to ARC results. The response level of JEOL-1 polymer bonded explosive (PBX) columns exposed to an engulfing liquid pool fire is examined by the slow cook-off test. The ignition location, ignition temperature, ignition time and the transient temperature distributions of JEOL-1 PBX columns during the slow cook-off are obtained by numerical simulation. It can be concluded from this study that JEOL-1 is a low vulnerable explosive with high thermal safety.

20 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ADIABATIC THERMAL DECOMPOSITION; JEOL-1 EXPLOSIVE; SLOW COOK-OFF

Document Type: Research Article

Publication date: September 1, 2019

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more