Skip to main content
padlock icon - secure page this page is secure

Open Access Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement

Download Article:
(PDF 5,290 kb)
In this study, the sensitivity and the linearity of the un-coated and TiO2-coated microfiber knot resonator (MKR) have been analyzed. The MKR is very sensitive to humidity changes since its refractive index is strongly humidity dependent. As a result, shifts occur in the resonance wavelength and there are also changes in output power. The un-coated MKR showed a sensitivity of 1.3 pm/%RH, in terms of the resonance wavelength, and a sensitivity of 0.0626 dB/%RH for the transmitted output power. The sensitivity increased greatly after the deposition of a porous TiO2 nanoparticle coating on the MKR. The TiO2-coated MKR showed an improved sensitivity of 2.5 pm/%RH, with respect to the resonance wavelength, and 0.0836 dB/%RH for the transmitted output power. This MKR sensor has the potential for use in a variety of humidity sensing applications.

16 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: December 1, 2016

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more