Skip to main content
padlock icon - secure page this page is secure

Open Access Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion

Download Article:
(PDF 8,294.6 kb)
We investigated the thermal and electrical conductivity of water seeded with single-walled carbon nanotubes (SWCNT) synthesized using the alcohol catalytic chemical vapour deposition method. Sodium deoxycholate was used as the surfactant to prepare stable nanofluids, which we then thoroughly characterized by microscopic and spectroscopic methods. Electrical conductivity measurements showed power law dependence with respect to SWCNT loading, while the thermal conductivity increase showed a linear dependence on loading. The effective thermal conductivity of the nanofluid was also found to increase with increasing temperature. Viscosity of the nanofluids showed a threefold increase compared to the thermal conductivity increase, which may play a crucial role in utilizing this fluid for practical applications. We compare experimental results with existing analytical models and discuss the critical role of thermal boundary resistance, which limits the improvement in thermal conductivity. Influence of SWCNT aggregation in the increase of effective thermal conductivity is also discussed.

43 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: September 1, 2012

More about this publication?
  • Materials Express is a peer-reviewed multidisciplinary journal reporting emerging researches on materials science, engineering, technology and biology. Cutting-edge researches on the synthesis, characterization, properties, and applications of a very wide range of materials are covered for broad readership; from physical sciences to life sciences. In particular, the journal aims to report advanced materials with interesting electronic, magnetic, optical, mechanical and catalytic properties for industrial applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more