Skip to main content
padlock icon - secure page this page is secure

Exploration of Non-Linear Thermal Radiation and Suspended Nanoparticles Effects on Mixed Convection Boundary Layer Flow of Nanoliquids on a Melting Vertical Surface

Buy Article:

$106.46 + tax (Refund Policy)

In this paper, the significance of increasing nonlinear thermal radiation on boundary layer flow of some nanofluids is deliberated upon. The effects of magnetic field, melting and viscous dissipation are also considered. The numerical results are obtained for governing flow equations and compared with the previously published results for a special case and found to be in excellent agreement. The effects of various physical parameters such as melting parameter, thermal radiation parameter, temperature ratio parameter and Eckert number on velocity and temperature profiles are analyzed through several plots. The numerical results of physical quantities of engineering interest such as skin friction coefficient and local Nusselt number are presented and discussed in detail. It is found that the nonlinear thermal radiation effect is favourable for heating processes than linear thermal radiation effect. Additionally, the moving parameter and melting parameter can be used to reduce the friction or drag forces.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: MELTING SURFACE; MIXED CONVECTION; NANOFLUID; NONLINEAR THERMAL RADIATION; NUMERICAL SOLUTION; NUSSELT NUMBER

Document Type: Research Article

Publication date: October 1, 2018

More about this publication?
  • Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author's photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more