Skip to main content
padlock icon - secure page this page is secure

Real Space Multigrid Method for Ballistic Carbon Nanotubes Field-Effect Transistor

Buy Article:

$106.51 + tax (Refund Policy)

This paper is focus on the development of a multigrid method, which is applied and its numerical simulation capability in carbon nanotube field-effect transistor (CNTFET). This research applied multigrid method in fixed size nanotube length, ∼45 nm, and the transistor channel (13, 0) intrinsic carbon nanotubes (CNTs). In this research, we explored and compared the performance of CNTFET in simulation time with different size of grid points (101 × 101 until 701 × 701). This enables an efficient calculation of quantum transport properties, which relies on the Poisson equation matrices in real space approach. The comparison results show that the multigrid technique requires less computational time, by up to 54% without the Jacobian matrix and 4% with the Jacobian matrix.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CARBON NANOTUBES; JACOBIAN MATRIX; MULTIGRID; POISSON EQUATION; REAL SPACE APPROACH

Document Type: Research Article

Publication date: September 1, 2018

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more