Skip to main content

Magnetic Quantum-Dot Cellular Automata: Recent Developments and Prospects

Buy Article:

$107.14 + tax (Refund Policy)

Quantum-dot Cellular Automata (QCA) is a computational paradigm that uses local physical coupling between nominally identical bistable building blocks (cells) assembled into arrays to perform binary logic functions. QCA offers low power dissipation and high integration density of functional elements. Depending upon the choice of local fields causing interactions between the cells, different types of QCA are possible, such as magnetic, electronic, or optical. Here we discuss recent developments in the field of magnetic QCA (MQCA) all-magnetic logic where planar, magnetically-coupled, nanometer-scale magnets are assembled into the networks that perform binary computation. The nanomagnets are defined by electron beam lithography. We demonstrate the operation of basic elements of MQCA architecture such as binary wire, three input majority logic gate, and their combination, and discuss interfacing such systems with conventional CMOS-based logic.

Keywords: ADIABATIC CLOCKING; FIELD-COUPLED COMPUTING; MAGNETIC NANOCOMPUTING; MICROMAGNETISM; PATTERNED MAGNETIC MEDIA; QUANTUM-DOT CELLULAR AUTOMATA

Document Type: Review Article

Publication date: 01 March 2008

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content