
Controlling Phase Composition, Properties and Activity of TiO2 Nano-Photocatalyst Synthesized by Hydrothermal Technique in the Degradation of Cinnamic Acid Solution
In this work, titanium oxide catalysts were synthesized by the hydrothermal method from titanium isopropoxide (TTIP) as a precursor under acidic (Ti-A1 and Ti-A2), neutral (Ti-W) and alkaline (Ti-B) media. Characteristics of the catalysts were identified by various methods including
X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller adsorption, UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, and Raman spectroscopy. The phase composition and PZC value of the obtained catalysts depended on the hydrothermal
medium and the amount of TTIP: pure anatase and brookite phase formed at neutral and alkaline medium, respectively; whereas acidic medium favored the formation of anatase/rutile mixed phase and anatase phase decreased with the increasing amount of TTIP. The band gap energy of the synthesized
catalysts was approximately 3.08–3.23 eV. Photocatalytic activity of synthesized catalysts was surveyed in the degradation of cinnamic acid (CA) solution at various pH in the region from 3.8 to 9.0 under UV irradiation. Photocatalytic oxidation was favorable in an acidic environment.
At acidic pH values (3.8 and 5.0), the CA conversion was in the order of Ti-A2 ≥ Ti-A1 > Ti-P25 > Ti-W ≫ Ti-B, whereas it followed Ti-P25 > Ti-A1 > Ti-A2 ≈ Ti-W > Ti-B at pH 7.0 as well as pH 9.0.
Keywords: Acidic; Cinnamic Acid; Hydrothermal Method; Neutral and Alkaline Medium; Photodegradation; TiO2
Document Type: Research Article
Affiliations: 1: School of Education, Can Tho University, Can Tho 900000, Vietnam 2: Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam 3: Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam
Publication date: September 1, 2020
- Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content