Skip to main content
padlock icon - secure page this page is secure

Reduced Graphene Oxide/Multiwalled Carbon Nanotube Composite Decorated with Fe3O4 Magnetic Nanoparticles for Electrochemical Determination of Hydrazine in Environmental Water

Buy Article:

$106.73 + tax (Refund Policy)

In the present work, a reduced graphene oxide and multiwalled carbon nanotube (RGO/MWCNTFe3O4) composite decorated with Fe3O4 magnetic nanoparticles was prepared as an electrochemical sensor. The surface morphology of the prepared composite was identified by scanning electron microscopy and X-ray diffraction. The electrochemical properties of the GCE/RGO/MWCNT-Fe3O4 electrode were investigated by electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The GCE/RGO/MWCNT-Fe3O4 electrode exhibited higher electrocatalytic performance towards the oxidation of hydrazine. In the optimal conditions, the GCE/RGO/MWCNT-Fe3O4 electrode showed a wide linear range (0.15–220 μM), low limit of detection (LOD) (0.75 μM), and high sensitivity (2.868 μA μM−1 cm−2). The prepared GCE/RGO/MWCNT-Fe3O4 electrode also had excellent repeatability, selectivity, and reproducibility. The practical application of the electrode was confirmed with various spiked water samples and demonstrated acceptable recovery.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Electrochemical Sensor; Fe3O4; Graphene; Hydrazine; Magnetic Nanoparticles; Multiwalled Carbon Nanotube

Document Type: Research Article

Affiliations: 1: Department of Physical Chemistry, School of Chemical Sciences, University of Madras (Guindy Campus), Chennai 600025, Tamil Nadu, India 2: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan 3: Department of Chemistry, Anna University, Chennai 600025, India

Publication date: May 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more