Skip to main content
padlock icon - secure page this page is secure

Fabrication of Novel Z-Scheme Bi2WO6/NaBiO3 Nanocomposites with Enhanced Photocatalytic Activity in the Degradation of 2,3-Dichlorophenol

Buy Article:

$106.73 + tax (Refund Policy)

The Z-scheme Bi2WO6/NaBiO3 nanocomposites were first fabricated by a facile hydrothermal method, and were then characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive spectrometer, Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy and N2 adsorption–desorption. The as-prepared Bi2WO6/NaBiO3 nanocomposites exhibit outstanding photocatalytic activity and recyclability. A 98.4% photodegradation of 2,3-dichlorophenol (50 mg·L−1) was attained in the presence of Bi2WO6/NaBiO3 (1:10) under the visible-light irradiation in 30 min. In particular, the photocatalytic mechanism has been discussed in detail, based on four aspects: (1) oxidative species, (2) photoelectrochemical performance, (3) conduction band and valence band energy levels and (4) possible transition states and reactions. In conclusion, O 2 is the main active oxidative species in the Bi2WO6/NaBiO3 nanocomposite. The material has higher photocurrent and visible light adsorption but lower electron–hole pairs recombination, which contributes to distinguished photocatalytic efficiency. The Z-scheme photocatalytic path was proposed and the possible degradation process and routes have been summarized.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 2,3-Diclorophenol; Bi2WO6/NaBiO3; Mechanism; Z-Scheme Photocatalysis

Document Type: Research Article

Affiliations: 1: Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China 2: Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China 3: Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, 8 Jiangwangmiao Street, Nanjing, 210042, China

Publication date: May 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more