Skip to main content
padlock icon - secure page this page is secure

Development of Mesoporous Silica Nanoparticles of Tunable Pore Diameter for Superior Gemcitabine Drug Delivery in Pancreatic Cancer Cells

Buy Article:

$106.73 + tax (Refund Policy)

Superior delivery of anticancer drug gemcitabine has been achieved with mesoporous silica nanoparticles (MSN), by addressing three challenges in MSN synthesis: (i) MSN was synthesized with particle diameter between 42 to 64 nm, to utilize enhanced permeability and retention effect of small particles, (ii) MSN of larger internal pore diameter (2.5–5.2 nm) was made as a tunable morphological parameter to optimize both drug loading and its release rate, in a controlled, differential manner and (iii) higher drug release at extracellular cancer-cell pH (5.5) was achieved, compared to physiological pH (7.4) of healthy cells. MSN with above features was made by the sol–gel route, with trimethylmethoxysilane as a size-quencher and hexane or decane as a pore expander. Highest gemcitabine loading of 14.92% and a cumulative release of 58% at pH 5.5 could be obtained with the optimum sample having pore diameter of 5.2 nm, in comparison to the desirably low 22% release at pH 7.4. Consequently, we obtained 60% cell growth-inhibition of pancreatic cancer cell-line (MIA Paca-2), via gemcitabine loaded MSN. This was possible because of increased gemcitabine release from MSN with larger pore diameter of 5.2 nm, simultaneously demonstrating good target-selectivity of MSN as a drug-carrier, due to engineering of its pore-size.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Drug Loading; Drug Release; Mesoporous Silica Nanoparticles; Pancreatic Cancer; Pore Expander

Document Type: Research Article

Affiliations: 1: Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India 2: Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Publication date: May 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more