Skip to main content
padlock icon - secure page this page is secure

Nanoarchitectonics of Acicular Nanocrystal Assembly and Nanosheet Assembly for Lithium-Ion Batteries

Buy Article:

$106.73 + tax (Refund Policy)

Nanoarchitectonics of metal oxide nanocrystal electrodes were developed for lithium-ion batteries. The electrodes included copper nanoparticles and doped fluorine. For the acicular nanocrystals, charge–discharge reactions progressed at 1.8 V over 100 cycles at 100 and 10 μA. A 15-mmdiameter battery containing acicular nanocrystals showed capacity, coulomb efficiency, and specific capacity, respectively of 20 μAh, 98%, and ~242 mAh/g at 100 μA and 40 μAh, 99%, and 484 mAh/g at 10 μA. The TiO2/SnO2 electrode consisted of a SnO2 sheet-assembled structure with surface layers of anatase TiO2. The TiO2/SnO2 battery operated at 1.3 (100 cycles) and 1.2 (50 cycles) V at 100 and 10 μA, respectively; its capacity, coulomb efficiency, and specific capacity, respectively were 50 μAh, 98%, and 161 mAh/g at 100 μA and 200 μAh, 97–98%, and 643 mAh/g at 10 μA. The characteristic microstructure, chemical composition, and crystal faces of both materials contributed to battery performance.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Acicular Crystal; Aqueous Solution Process; Lithium-Ion Battery; Nanoarchitectonics; Nanosheet; SnO2; TiO2

Document Type: Research Article

Affiliations: 1: National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan 2: National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Publication date: May 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more