Skip to main content
padlock icon - secure page this page is secure

Facile Synthesis of Phase Tunable MoO3 Nanostructures and Their Electrochemical Sensing Properties

Buy Article:

$106.73 + tax (Refund Policy)

MoO3 nanostructures with tunable phases such as α-MoO3, β-MoO3 and their mixed phases were synthesized via a simple solid state decomposition method and employed as electrocatalyst for the detection of biomolecule. The phase and crystal structure of the synthesized MoO3 nanostructures were confirmed through X-ray diffraction (XRD) studies. The MoO3 nanostructures were also characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy for their structural, chemical state and optical properties, respectively. The observed results confirmed the successful formation of phase tunable MoO3 nanostructures. The surface texture and morphology of the samples was characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The obtained images showed the formation of hexagons, cubes and rods morphology of MoO3. The synthesized MoO3 nanostructures were used to modify the surface of glassy carbon electrode (GCE) to detect biomolecule (quercetin).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Cubes; Different Phase; Electrocatalyst; Hexagons; MoO3; Rods

Document Type: Research Article

Affiliations: 1: Crystal Growth Centre, Anna University, Chennai 600025, India 2: Nanoscience and Nanotechnology, Anna University, Chennai 600025, India 3: Department of Inorganic Chemistry, University of Madras, Chennai 600025, India

Publication date: May 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more