Skip to main content
padlock icon - secure page this page is secure

Antibacterial Efficiency of Zn, Mg and Sr Doped Bioactive Glass for Bone Tissue Engineering

Buy Article:

$106.81 + tax (Refund Policy)

Bioactive glasses are inorganic biomaterials that have been used successfully in bone tissue engineering and in dentistry as filling materials. But due to poorer mechanical strength the bioactive glasses have limited application in load-bearing positions. If efforts are made to increase material strength, their bioactivity gets decrease. To comprehend the optimal toning between biological and mechanical properties, we aim to develop the new nano bioactive glass using simple sol–gel method having a composition of 50%SiO2–40%CaO–5%P2O5–2%ZnO–2%MgO–1%SrO (mol%) with three different bivalent metal ions (Zn2+, Mg2+ and Sr2+). The structural morphology, crystallinity, physical and chemical behavior of the prepared bioglass ceramics were analyzed through XRD, N2-adsorption measurements, FTIR, FESEM with EDS and HR-TEM. The bioactivity of the sample was analyzed in Dulbecco’s modified eagle’s medium solution for ten days. The synthesized nano bioglass-ceramic shows the apatite layer formation which was confirmed through XRD and FTIR and show anti-bacterial properties for the four well-known pathogens/microorganism Bacillus cereus, Candida albicans, Escherichia coli and Staphylococcus aureus.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Anti-Bacterial Properties; Bivalent Ions; Hydroxyapatite; Nano Bioactive Glass; Sol–Gel

Document Type: Research Article

Affiliations: Department of Material Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India

Publication date: April 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more