Skip to main content
padlock icon - secure page this page is secure

Design and Implementation of a High-Throughput Vibrating Module for Nucleic Acid Detection System

Buy Article:

$106.73 + tax (Refund Policy)

The high-throughput nucleic acid detection system provides a good solution for detecting nucleic acids more safely, rapidly and accurately, which greatly improves the detection efficiency. Highthroughput nucleic acid detection mainly includes three steps: signal acquisition, signal amplification and signal processing. Therefore, obtaining the purified nucleic acid is the primary task of the nucleic acid detection, and the quality of the nucleic acid has a significant impact on results. In this paper, we employed the magnetic nanoparticle technology for extracting nucleic acids based on the platform of large liquid handling workstation and designed a matching vibrating module. The involved steps of core method, magnetic bead nucleic acid extraction technology, are mainly concerned with the cell lysis, nucleic acid binding, nucleic acid purification and magnetic particles elution. During the extraction process, specific temperature is required for the lysis and elution. It was shown that the temperature control part designed in this paper has the reliable stability, high accuracy by using the incremental proportion-integration-differentiation (PID) algorithm, with the control accuracy up to ±0.5 °C. The temperature regulating time is about 90 s, which can meet the experimental requirements. Besides, the vibrating uniformity of this module was further verified by protein concentration test, which proved that the module has the excellent performance and can be consistent with the experimental indictors of the nucleic acid extraction.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: High-Throughput; Magnetic Nanoparticle; Nucleic Acid Extraction; Temperature Control; Vibrating and Blending

Document Type: Research Article

Affiliations: 1: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China 2: Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China 3: Tibetan University of Tibetan Traditional Medicine, Lasa 850000, China

Publication date: April 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more