Skip to main content
padlock icon - secure page this page is secure

Size Dependence of the Integral Melting Enthalpy and Entropy of Nanoparticles

Buy Article:

$106.34 + tax (Refund Policy)

Precise thermodynamic relations to describe the size-dependent integral melting enthalpy and entropy of nanoparticles were deduced by virtue of designing a thermochemical cycle. The differences between integral and differential melting enthalpy and integral and differential melting entropy of nanoparticles were discussed. Nano-Sn of different sizes was prepared by means of chemical reduction, and differential scanning calorimetry (DSC) was utilized to obtain the melting temperature, melting enthalpy, and melting entropy. The experimental results agree with the theoretical predictions and literature results, demonstrating that the melting temperature, enthalpy, and entropy decrease with decreasing particle size and linearly vary with the reciprocal of particle size within the experimental size range. The variations of melting enthalpy and entropy with particle size mainly depend on the molar surface area, the interfacial tension, and the temperature coefficient of interfacial tension. These findings offer a better understanding of the effect of particle size on the melting thermodynamic behaviors of nanoparticles at different melting stages.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Melting Enthalpy; Melting Entropy; Melting Temperature; Nanoparticles; Particle Size

Document Type: Research Article

Affiliations: 1: Department of Metallurgy, Shanxi Engineering Vocational College, Taiyuan, 030009, China 2: Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China

Publication date: February 1, 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more