Skip to main content
padlock icon - secure page this page is secure

Factors Affecting the Acoustic In Vitro Release of Calcein from PEGylated Liposomes

Buy Article:

$107.14 + tax (Refund Policy)

Typical methods used in cancer treatment, including chemotherapy, are debilitating because of the various adverse side effects experienced by cancer patients. The free drug injected into the patient at given doses affects both healthy and cancerous cells. Therefore, novel methods are being researched to ensure the selectivity of the treatment. The purpose of this study is to test the release of a model fluorescent drug, calcein, from echogenic stealth liposomes, triggered by lowfrequency pulsed ultrasound. Several experimental parameters related to the ultrasound (US) and the investigated liposomes were varied in order to examine their effect on the acoustic release. Upon analysis of experimental results, the study concluded that release can be maximized by optimizing the sonication frequency, power density, and US pulse duration. When a non-isothermal chamber is used to conduct the experiments, it is important to have longer ‘Off’ than ‘On’ US periods in order to avoid overheating the liposomes. Applying such pulsation pattern can also be utilized to achieve slower release rates, which safely meet the desired drug levels at the end of the session. Our study also concluded that optimizing the liposome concentration is vital to delivering desired drug doses. Additionally, the type of lipids used in the synthesis should be carefully selected to produce stable yet acoustically sensitive liposomes capable of releasing at desired rates.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Chemotherapy; Drug Concentration; Echogenic Liposomes; Power Densities; Pulse Duration; Saturated and Unsaturated Lipids; Ultrasound

Document Type: Research Article

Affiliations: 1: Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, UAE 2: Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE

Publication date: November 1, 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more