Skip to main content

Synthesis of Metal Boride Nanoparticles Using Triple Thermal Plasma Jet System

Buy Article:

$107.14 + tax (Refund Policy)

Titanium, nickel, and tungsten boride nanoparticles were synthesized in the triple thermal plasma jet system. The coalesced high-enthalpy thermal plasma jet not only generates extensive high temperature regions but also allows the starting materials to penetrate into the center of high temperature regions effectively. The synthesis process of metal boride was investigated according to the nucleation temperature of three metals and boron. In the case of titanium and nickel borides synthesis, metals nucleation temperatures are lower than boron. The crystallinity of synthesized titanium boride nanoparticles was higher than nickel boride nanoparticles, since not only the nucleation temperature of titanium is higher than nickel but also the Gibbs free energy of all titanium boride was lower than whole nickel boride. However, the nucleation temperature of tungsten is higher than boron where nanoparticle synthesis process differed from former synthesis processes. It had influence on the crystal growth time in the high temperature regions where tungsten boride crystal structure was strongly prepared than nickel boride nanoparticles.

Keywords: Metal Boride Nanoparticle; Nickel Boride; Synthesis; Titanium Boride; Triple Thermal Plasma Jet; Tungsten Boride

Document Type: Research Article

Affiliations: 1: Department of Nuclear and Energy Engineering, Jeju National University, Jeju 63243, Republic of Korea 2: Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Republic of Korea

Publication date: 01 October 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content