Skip to main content

Electrodeposited Vanadium Dioxide Films with Unique Optical Property

Buy Article:

$107.14 + tax (Refund Policy)

This study represents a facile but effective electrodeposition method to fabricate vanadium dioxide (VO2) thin films on fluorine doped tin oxide (FTO) glass at room temperature. The film microstructure (thickness, surface structure, particle size and composition) and relevant optical properties were investigated by several advanced techniques. The pertinent variables that can affect the thin film formation and structure, such as deposition potential, time and post-treatment annealing temperature were also studied. It was found that the film thickness could be tuned from 35 to 130 nm by adjusting the potential from −1.22 to −1.35 V, and consequently leading to optical transmittance decreasing from ∼60% to ∼38% in the wavelength of 500–1000 nm, further confirmed by computational simulations using three-dimension (3D) finite-difference time-domain method. The hysteresis loop of the generated VO2 film on FTO glass shows that the phase transition temperature from monoclinic to rutile is around 73 °C, a little higher than pure monoclinic VO2 (∼68 °C) in this study. This proposed electrodeposition method is possible to extend into obtaining metal oxide films with tuneable surface properties for thermochromic smart devices.

Keywords: Electrodeposition; Smart Coatings; Three-Dimension (3D) Finite-Difference Time-Domain Simulation; VO2 Thin Films

Document Type: Research Article

Affiliations: 1: School of Mechanical Engineering, University of South China, Hengyang, Hunan 421001, China 2: Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia

Publication date: 01 June 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content