Skip to main content
padlock icon - secure page this page is secure

Electrical Stability of Solution-Processed Indium Oxide Thin-Film Transistors

Buy Article:

$106.51 + tax (Refund Policy)

We investigated the electrical stability of bottom-gate/top-contact-structured indium oxide (In2O3) thin-film transistors (TFTs) in atmospheric air and under vacuum. The solution-processed In2O3 film exhibits a nanocrystalline morphology with grain boundaries. The fabricated In2O3 TFTs operate in an n-type enhancement mode. Over repeated TFT operation under vacuum, the TFTs exhibit a slight increase in the field-effect mobility, possibly due to multiple instances of the “trapping and release” behavior of electrons at grain boundaries. On the other hand, a decrease in the fieldeffect mobility and an increase in the hysteresis are observed as the measurement continues in atmospheric air. These results suggest that the electrical stability of solution-processed In2O3 TFTs is significantly affected by the electron-trapping phenomenon at crystal grain boundaries in the In2O3 semiconductor and the electrostatic interactions between electrons and polar water molecules.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Indium Oxide; Solution Process; Stability; Thin-Film Transistor

Document Type: Research Article

Affiliations: 1: Department of Electronic Engineering, Hallym University, Chuncheon 24252, Korea 2: School of Electronics, Kyungpook National University, Daegu 41566, Korea 3: Department of Rehabilitation Medicine, Hallym University, College of Medicine, Seoul 07247, Korea

Publication date: April 1, 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more