Skip to main content

Adsorption Behaviour of Tween 85 on Nano-Aluminium Particles in Aluminium/JP-10 Suspensions

Buy Article:

$107.14 + tax (Refund Policy)

A stability analyser and a rheometer were used to study the effects of Tween 85 (polyoxyethylene sorbitan trioleate) on the dispersion properties of nano-aluminium/JP-10 (exo-tetrahydrodicyclopentadiene) suspensions. Results show that the addition of Tween 85 can effectively improve the stability of two-phase suspensions by hindering particle aggregation and reduce the viscosity of a system. The surface characteristics of the zeta potential and the contact angle were measured. The dispersion of the suspensions was improved by Tween 85 mainly by enhancing the steric hindrance of particles. The adsorbed particles obtained in JP-10 with different Tween 85 concentrations were analysed via scanning electron microscopy and Fourier transform infrared spectroscopy to explore the adsorption behaviour of Tween 85 molecules on the surface of aluminium particles and to confirm that Tween 85 formed an adsorption layer on the particle surface. Thermogravimetric analysis indicated that the adsorption amount of Tween 85 increased with its concentration in JP-10. The roughness analysis of the surface of adsorbed particles was measured via atomic force microscopy to characterise the thickness of the adsorption layer. The results showed that Tween 85 molecules formed an irregular adsorption layer on the particle surface, and an increase in the concentration of Tween 85 in JP-10 increased the thickness of the adsorption layer.

Keywords: Adsorption Behavior; Aluminium; Dispersion Properties; Nanoparticles

Document Type: Research Article

Affiliations: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 313003, China

Publication date: 01 April 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content