Skip to main content
padlock icon - secure page this page is secure

The Comparison of the Photocatalytic Performance Shown by TiO2 and TiO2/WO3 Composites— A Parametric and Kinetic Study

Buy Article:

$106.65 + tax (Refund Policy)

Kinetic and mechanistic related approaches for mostly titania were intensively studied in the literature. However, combined modelling and kinetic studies are few. Therefore, the present work focuses on modelling the dependence of the degradation kinetics of two model compounds (salicylic acid—SA and methyl orange—MO) on Evonik Aeroxide P25, hydrothermally prepared hierarchical TiO2 and P25/WO3 nanostars, obtained also by hydrothermal crystallization. The obtained individual semiconductors and the composites were characterized using XRD, DRS, SEM, while the photocatalytic degradation of the model pollutants were carried out varying the catalyst load, the initial pollutant concentration and incident light intensity. It was found that the degradation kinetics were independent from the hierarchical nature of the material, while significant dependencies of the degradation efficiency was found from the previously mentioned investigation parameters. All these parametric interdependences were successfully studied and a kinetic model was proposed for both bare TiO2 and TiO2/WO3 composite systems.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Composite Materials; Degradation; Kinetic Modelling; Methyl Orange; Salicylic Acid

Document Type: Research Article

Affiliations: 1: Faculty of Physics, Babeş–Bolyai University, 400084 Cluj–Napoca, Romania 2: Faculty of Chemistry and Chemical Engineering, Babeş–Bolyai University, 400028 Cluj-Napoca, Romania

Publication date: January 1, 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more