Skip to main content
padlock icon - secure page this page is secure

Theoretical Analysis of Lattice-Mediated Plasmon Resonance Using Finite-Difference Time-Domain Method

Buy Article:

$106.65 + tax (Refund Policy)

Although much progress has been made on lattice plasmon mode (LPM), there is still a lack of systematic studies on LPM generation; questions remain unanswered on topics such as high-order LPM generation, LPM generation from near-coupling complex elements, and modulation of incidence energy. Here, we systematically evaluated the properties of multiple high-order LPM, energy flow modulation of incident polarization, element, angle of incidence, and hybrid of dual lattice using the finite-difference time-domain method. This study presents a clear illustration of LPM and will help on further development of LPM and plasmonics-based fields.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Finite-Difference Time-Domain Method; Lattice Plasmon Mode; Localized Surface Plasmon Resonance; Plasmonics

Document Type: Research Article

Affiliations: State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha Hunan, 410083, China

Publication date: January 1, 2019

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more