Skip to main content

Induction of FAS II Metabolic Disorders to Cause Delayed Death of Toxoplasma gondii

Buy Article:

$107.14 + tax (Refund Policy)

The exact mechanism of delayed death of Toxoplasma gondii is not known. FAS II synthesis in the apicoplast of T. gondii is essential for the survival of Toxoplasma gondii, while β-hydroxyacylacyl carrier protein dehydratase (FabZ) is indispensable for fatty acid synthesis. The present study investigated the relationship between the delayed death of T. gondii by inducing metabolic disorders due to suppression the expression of FabZ. A tetracycline-induced knockout vector inserted with T. gondii fabZ gene was constructed, and transfected into T. gondii TATi strain by electroporation. The stable mutants with tetracycline-induced knockout were selected, expression of FabZ was suppressed by using anhydrotetracycline (ATc), and FAS II deficient tachyzoites were prepared. The Western blot and qPCR results revealed that proliferation of FAS II deficient tachyzoites was not significantly different compared to the normal tachyzoites at 24 h and 48 h; however, after 72 h, the number of T. gondii tachyzoites in the ATc treated group was significantly (p < 0.05) less than that of non-treated group, indicating the delayed death of T. gondii caused by the loss of apicoplast and decrease in the expression of FabZ, which inhibited the FAS II metabolism. The results of this study can be used for prevention of toxoplasmosis by inducing delayed death of T. gondii.

Keywords: Delayed Death; Tetracycline-Induced Knockout; Toxoplasma gondii

Document Type: Research Article

Affiliations: 1: School of Medicine, Jiangsu University, Zhenjiang 212013, China 2: Department of Clinical Laboratory, The Affiliated Dongtai Hospital of Nantong University, Dongtai 224200, China 3: Jingjiang College of Jiangsu University, Zhenjiang 212013, China

Publication date: 01 December 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content