Skip to main content
padlock icon - secure page this page is secure

Electric Heating Performance of Pyrolyzed Photoresist Films Prepared by Proton Irradiation and Pyrolysis

Buy Article:

$105.00 plus tax (Refund Policy)

In this study, pyrolyzed photoresist films (PPFs) were prepared using commercial SU8 photoresist by proton irradiation and pyrolysis. SU8 thin films were irradiated with high-energy proton ions and then pyrolyzed in a tube furnace at 1000 °C under inert atmosphere. The carbonization yield of the PPFs increased with an increasing fluence due to the formation of more crosslinked network structures at a higher fluence. The electrical resistance decreased with an increasing fluence due to the higher remaining thickness and carbonization yield at a higher fluence. Therefore, the PPFs prepared at 1 × 1016 ions/cm2 showed the maximum temperature of 150 °C at 20 V and a high electric power efficiency of 1.57 mW/°C.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ELECTRIC HEATING; PROTON IRRADIATION; PYROLYZED PHOTORESIST FILM

Document Type: Research Article

Publication date: 01 October 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more