Skip to main content

Shape-Control of Three-Dimensional Self-Assembly Graphene by Hydrothermal Reaction Time and Its Biological Application

Buy Article:

$107.14 + tax (Refund Policy)

In this paper, three-dimensional self-assembly graphene (3D-G) was prepared by the hydrothermal synthesis method, and 3D-G was designed as a suitable biological scaffold for cell growth and adhesion. The shape of 3D-G was tuned by adjusting the hydrothermal reaction time (6 h, 12 h, 18 h and 24 h). Then the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses were used to characterize the microstructure and component of 3D-G, which showed that the length, diameter, pore size and defects of 3D-G were all decreased as the reaction-time increased. In vitro cell culture experiment, the cytocompatibility of 3D-G prepared under different hydrothermal reaction time was assessed using mouse fibroblast cells (L929) via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT). Meanwhile, the cell adhesion, growth and proliferation were also observed by SEM. These results showed that the 3D-G with the reaction time of 24 h (3D-G/24 h) had the best cytocompatibility, which could be used as tissue scaffolds for cell growth.

Keywords: Cytocompatibility; Hydrothermal Reaction Time; Three-Dimensional Self-Assembly Graphene

Document Type: Research Article

Affiliations: 1: Tianjin International Joint Research Center of Surface Technology for Energy Storage Materials, Tianjin Normal University, Tianjin 300387, China 2: Tianjin Institute of Urological Surgery, Tianjin Medical University, Tianjin 300070, China

Publication date: 01 August 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content