Skip to main content

Microstructure and Chemo-Physical Characterizations of Functional Graphene Oxide-Iron Oxide-Silver Ternary Nanocomposite Synthesized by One-Pot Hydrothermal Method

Buy Article:

$107.14 + tax (Refund Policy)

In this work, a functional graphene oxide-iron oxide-silver (GO-Fe3O4-Ag) ternary nanocomposite was synthesized by using one-pot hydrothermal treatments of mixture solutions of silver nitrate (AgNO3), ferrous chloride tetrahydrate (FeCl2 4H2O), polyvinylpyrrolidone (PVP), graphene oxide (GO), and ammonium hydroxide solution (NH4OH). The systematic effects of synthesis conditions on the microstructure and formation of binary and ternary composite systems were studied. Importantly, high-crystalline GO-Fe3O4-Ag ternary nanomaterials with average sizes of Fe3O4 particles ~16 nm and of Ag particles ~20 nm were obtained at optimized conditions (125 °C, 2.5 mM of AgNO3 and 5 mL of NH4OH). Magnetic analysis indicated that the saturated magnetization value of Fe3O4-Ag binary composite sample (~73.1 emu/g) was improved as compared with pure Fe3O4 nanoparticles (~60.6 emu/g), while this of GO-Fe3O4-Ag ternary composite sample was about 57.3 emu/g. With exhibited advantages of low-cost, high purity and short synthesis time, the hydrothermal-synthesized GO-Fe3O4-Ag ternary nanocomposite can be a promising candidate for advanced environmental catalyst and biomedical applications.

Keywords: GO-Fe3O4-Ag Nanocomposites; Magnetic Properties; Microstructure; One-Pot Hydrothermal Method

Document Type: Research Article

Affiliations: Department of Nanoscience and Nanotechnology-DoNST, Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Street, Hai Ba Trung District, Hanoi 10000, Vietnam

Publication date: 01 August 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content