Skip to main content

Synthetic Polysaccharides as Drug Carriers: Synthesis of Polyglucose-Amphotericin B Conjugates and In Vitro Evaluation of Their Anti-Fungal and Anti-Leishmanial Activities

Buy Article:

$107.14 + tax (Refund Policy)

While many naturally occurring polysaccharides have been widely used as drug carriers, there are two main drawbacks in their use: the first is their physical properties such as molecular weight, branching, type of glycosidic linkages and solubility depend on their source and the method of isolation and purification, the second is many of them are contaminated with proteins and protein removal is essential for preventing immune reactions. Synthetic polysaccharides on the other hand can be tailor made from their respective monomers with consistent physical properties and are, free from protein contamination, both being significant advantages in their use. Although, the synthesis of polysaccharides such as polyglucose, polymannose, polygalactose etc., by the polycondensation of their respective monomers have been reported more than half a century ago, their use as drug carriers have not received any attention so far. In this report, we show that polyglucose (PG) having a weight average molar mass of 37,000 g/mol can be synthesized in a single step by the melt polycondensation of glucose in over 70% yield. Oxidation using sodium periodate generated aldehyde functions on the polymer. Amphotericin B, (AmB) a water-insoluble polyene antibiotic was chosen as a model drug to couple onto periodate oxidized PG via imine linkage at ~20 wt% concentration. The drug loading capacity of the conjugates was above 90%. Further reduction using sodium borohydride gave the more stable amine conjugates with any residual aldehyde on the polymer backbone getting reduced to hydroxyl groups. The conjugates were highly soluble in water and stable on storage. At ten times the concentration of AmB, the conjugates produced negligible hemolysis to human blood. The AmB conjugates were then evaluated for their anti-fungal activity against C. albicans and A. fumigatus and anti-leishmanial activity against different strains of L. donovani in culture. The conjugates showed potent anti-fungal and anti-leishmanial activity. The use of synthetic polysaccharides in drug delivery and in other biomedical applications will have many potential advantages.

Keywords: Amphotericin B; Anti-Fungal; Anti-Leishmanial; Hemolysis; Polyglucose; Polymer-Drug Conjugate; Polymeric Prodrugs

Document Type: Research Article

Affiliations: 1: Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India 2: Chimiothérapie Antiparasitaire, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, 5, Rue Jean-Baptiste Clement, F-92296, Chatenay-Malabry, France

Publication date: 01 April 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content