Skip to main content
padlock icon - secure page this page is secure

Preparation and In Vitro Evaluation of Elastic Nanoliposomes for Topical Delivery of Highly Skin-Permeable Growth Factors

Buy Article:

$107.19 + tax (Refund Policy)

Percutaneous delivery of growth factors is often used to treat wounds, and for cosmetic purposes, as a way of accelerating healing and skin regeneration, respectively. However, the therapeutic effects of growth factors are diminished by their poor absorption when delivered percutaneously, in addition to their rapid degradation by proteinases. To overcome these obstacles, we constructed two skin-permeable compounds. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor-A (VEGF-A) were both genetically paired with low-molecular-weight protamine (LMWP), to yield the compounds LMWP-bFGF and LMWP-VEGF-A, respectively. The molecular weights and N-terminal amino acid sequences of LMWP-bFGF and LMWP-VEGF-A confirmed that the N-terminus-specific conjugation of LMWP with bFGF and VEGF-A had been successful. The biological abilities of the native factors to stimulate human fibroblast (CCD-986sk) and endothelial cell proliferation were preserved. Both compounds significantly promoted wound (scratch) recovery and enhanced procollagen type I C-peptide synthesis in CCD-986sk cells (to levels 184 and 133% those of the native compounds, respectively). The LMWP-conjugated growth factors were significantly more permeable than the native forms (by 7.29- and 29.22-fold, respectively). Finally, encapsulation of the compounds in positively charged elastic nanoliposomes (115 ± 1.54 nm in diameter with a zeta potential of 57.2 ± 3.05 mV) further improved both permeation and stability. Thus, nanoliposomes loaded with LMWP-conjugated growth factors are expected to enhance skin regeneration; the materials will find applications in wound-healing therapies and anti-wrinkle cosmetics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Cationic Elastic Nanoliposome; Fibroblast Growth Factor; Protein Transduction Domain; Skin Regeneration; Topical Delivery; Vascular Endothelial Growth Factor

Document Type: Research Article

Affiliations: College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea

Publication date: February 1, 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more