Skip to main content

Synthesis of Antioxidative Conductive Copper Inks with Superior Adhesion

Buy Article:

$107.14 + tax (Refund Policy)

Conductive films have attracted much attention in the printed electronics industry. To date, expensive conductive silver inks have been utilized widely in these conductive films, which ultimately increase the cost. Hence the alternative low-cost copper inks will be of great interest in the future. This paper will present how to synthesize antioxidative conductive copper inks with superior adhesion to FR4 substrates. The antioxidative conductive copper inks were prepared by dispersing the antioxidative copper nanoparticles in diethylene glycol with the bisphenol-F type BEF170 epoxy resin as a binder and the Methyl-5-norbornene-2,3-dicarboxylic anhydride (NMA) as a curing agent, then were coated on FR4 substrates to form the copper films, followed by sintering at 250 °C in nitrogen atmosphere for 20 minutes. We found that the formation of three-dimensional structure between BFE170 binder and curing agent NMA don’t affect the conductivities of copper films, and meanwhile can enhance the adhesion strength on FR4 substrates. The lowest resistivity of 158 μΩ · cm determined by using the four-point probe method and the highest adhesion of no peeling after the 10 times peel-off test with 3 M Scotch 600 tape were achieved with the copper ink composed of 1 wt% of BEF170 epoxy resin binder mixed with curing agent NMA in an equivalent ratio of 1:1.

Keywords: Adhesion; Binder; Copper Ink; Copper Nanoparticle; Curing Agent; Epoxy Resin

Document Type: Research Article

Affiliations: 1: Institute of Organic and Polymeric Materials, National Taipei University of Technology, 10608, Taiwan 2: Technology Center, Geckos Group, 6F-11, No 38, Taiyuan St., Zhubei City, Hsinchu County 30265, Taiwan

Publication date: 01 January 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content