Skip to main content

Hydrogen-Enriched Producer Gas Production and Chemical Conversion to Usable Gas Product Through Biomass Gasification Using NiO Nanoparticles Dispersed on SBA-15

Buy Article:

$107.14 + tax (Refund Policy)

NiO/SBA-15 with nano NiO particles and cavities, has high catalytic ability for gas conversion and favors the decomposition of large tar molecules derived from gasification due to its larger pore sizes. Therefore, in this work the bench-scale cedar gasification was achieved using NiO/SBA-15 as a reforming catalyst to produce H2 rich producer gas. NiO/SBA-15 appeared to be suitable for H2 rich (over 50 v/v% (N2 free)) producer gas production, as well CH4, CnHm and tar reduction. Although the amount of NiO did not affect the gas composition, tar removal was decreased when the amount of NiO was considerably increased. In addition, the conversion of the producer gas was also carried out at high and low temperatures in the presence or absence of steam, using NiO/SBA-15 as a gas conversion catalyst. Regardless of the conversion temperature, conversion of the producer gas was largely affected by steam. At 750 °C and no steam ≈14% CO2 was converted to CO, whereas no CO2 conversion occurred in the presence of steam. At low temperatures, the maximum CH4 yield in the absence of steam was 23%, which was higher than that in the presence of steam (15%).

Keywords: Biomass Gasification; Chemical Conversion; Hydrogen Production; Mesoporous Silica; Nano NiO Particle

Document Type: Research Article

Affiliations: 1: Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan 2: Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China 3: Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan

Publication date: 01 September 2017

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content