Skip to main content
padlock icon - secure page this page is secure

Development of Nanosized, Pramipexole-Encapsulated Liposomes and Niosomes for the Treatment of Parkinson’s Disease

Buy Article:

$106.34 + tax (Refund Policy)

Parkinson’s disease (PD) is characterized by the degeneration of the dopamine-producing cells in the substantia nigra. Early diagnosis and therapy is essential at the molecular level before initiation of symptomatic changes. Blood-brain barrier (BBB) penetration still remains a major challenge. Increased brain penetration and targeting can be achieved by formulating nanosized drug delivery systems using liposomes and niosomes. Other studies have been performed using pramipexole, but our study is novel in evaluating the penetration and antiparkinsonian effect of nanosized, polyethylene glycol (PEG)ylated pramipexole-encapsulated liposomes and niosomes. Nanosized, PEGylated, neutral and positively charged pramipexole-encapsulated liposomes and niosomes were formulated, characterized, and the release kinetics were evaluated. In vitro penetration of all formulations was evaluated using the BBB cell co-culture model. In vivo effectiveness of neutral, pramipexole-encapsulated liposomes and niosomes was evaluated in 6-hydroxydopamine (6-OHDA) lesioned rats by rotometer testing and autoradiography. All formulations exhibited approximately 10% encapsulation efficiency and around 100 nm particle sizes and fitted first-order release kinetics. All formulations were BBB permeable In vitro as determined by fluorescent images and fluorospectroscopy. Therefore, nanosized, neutral pramipexole-encapsulated niosomes showed better effects at a dosage approximately 9 times less than that administered using conventional pramipexole tablets for human in routine treatment. Nanosized PEGylated pramipexole liposomes and niosomes were blood brain barrier permeable. Nanosized pramipexole-encapsulated neutral niosomes showed potential therapeutic effects in a Parkinson’s disease animal model depending on the nanosize and non-ionic surfactant properties of the niosomes. Further experiments are currently being performed to improve the therapeutic effects.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BBB Penetration; Brain Delivery; Nanosized Pramipexole Liposomes; Nanosized Pramipexole Niosomes; Parkinson’s Disease Therapy

Document Type: Research Article

Affiliations: 1: Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey 2: UMR INSERM U930, Université François Rabelais de Tours, Tours, 37032, France 3: Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey

Publication date: August 1, 2017

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more