Skip to main content

Photoluminescence and Growth Mechanism of Oriented Hierarchical Fibrous-Like ZnO Nanowires

Buy Article:

$107.14 + tax (Refund Policy)

Oriented hierarchical fibrous-like ZnO nanowires with the diameter of about 30–50 nm and the length of about 15–30 um were successfully synthesized on the seed-coated Zn substrates by a simple two-step process. The morphology and structure of the obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is shown that fibrous-like ZnO nanowires with the aspect ratio of about 500˜1000 present the dense reticular structure, which are grown on ZnO nanowire arrays. But beyond that, as-prepared samples are found to be good single crystalline with hexagonal wurtzite structure and preferential grow along the c-axis. A possible growth mechanism of oriented hierarchical fibrous-like ZnO nanowires is presented in detail, revealing that the synthesis of fibrous-like ZnO nanowires should be attributed to differences in the growth rate of the different crystallographic planes and the two growth ways. The photoluminescence (PL) spectra of oriented hierarchical fibrous-like ZnO nanowires grown at 240 min shows the 5 nm blue-shift and enhanced intensity property in the UV emission.

Keywords: Fibrous-Like ZnO Nanowires; Formation Mechanism; Hydrothermal Method; Oriented Hierarchical; PL Property

Document Type: Research Article

Affiliations: School of Information Science and Technology, Northwest University, Xi’an 710069, China

Publication date: 01 January 2017

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content