Skip to main content

Dynamic Mechanical Properties, Crystallization Behavior and Morphology of Nanoscale Tin Fluorophosphate Glass/Polyamide 66 Hybrid Materials

Buy Article:

$107.14 + tax (Refund Policy)

The dynamic mechanical properties, crystallization behavior and morphology of nanoscale Tg tin fluorophosphate glass (TFP glass)/polyamide 66 (PA66) hybrid materials were investigated by XRD, DSC and SEM. The experimental results showed that the Tg of TFP/PA66 hybrid decreased and the third relaxation in the highly filled hybrid appeared due to the interaction between the TFP glass and amide groups of PA66. The storage modulus of the hybrid materials increased with increase in the content of TFP at low temperatures but had little effect at high temperatures. This result was attributed to the stiffness depression of the TFP glass when the temperature rose above its Tg and the similar elasticity of the two phases because of the interaction between the components. The degree of crystallinity and α, γ crystal content of PA66 both decreased due to the interaction between the two phases. In addition, the phase defect, the size distribution and the compatibility of TFP in the PA66 matrix were discussed by SEM, the results showed that the TFP appeared aggregation partly, but had the favorable compatibility in the PA66 matrix.

Keywords: Crystallization Behavior; Hybrid Materials; Morphology; Polyamide 66; Tin Fluorophosphate Glass

Document Type: Research Article

Affiliations: 1: College of Chemistry, Xiangtan University, Hunan Province, Xiangtan 411105, P. R. China 2: Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Xiangtan University, Hunan Province, Xiangtan 411105, P. R. China

Publication date: 01 April 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content