Skip to main content
padlock icon - secure page this page is secure

Optical Absorption Cross Section of Individual Multi-Walled Carbon Nanotubes in the Visible Region

Buy Article:

$106.64 + tax (Refund Policy)

The aim of the present work is to determine the optical absorption cross section for visible radiation of various types of multiwall carbon nanotubes (MWCNTs) having different dimensions through macroscopic optical measurements. This is achieved by dispersing MWCNTs in polydimethylsiloxane (PDMS) and preparing composite films. Different percentages (0.0% to 1.5%) of each MWCNTs type were mixed into the PDMS matrix using high speed mechanical stirring (∼1000 rpm) and ultrasonication (∼37 kHz) to reach optimal dispersion. By using doctor blading technique, 100 μm thick uniform films were produced on glass. They were then thermally cured and detached from the glass to get flexible and self-standing films. Field-Emission Scanning Electron Microscope (FESEM) analysis of cryo-fractured composite samples was used to check the dispersion of MWCNTs in PDMS, while Raman spectroscopy and FTIR were employed to rule out possible structural changes of the polymer in the composite that would have altered its optical properties. Total and specular reflection and transmission spectra were measured for all films. The absorption coefficient, which represents the fractional absorption per unit length and is proportional to the concentration of absorbing sites (i.e., MWCNTs at photon energies upon which PDMS is non-absorbing), was extracted. For each MWCNTs type, the absorption cross section of an individual MWCNT was obtained from the slope of absorption coefficient versus MWCNTs number density curve. It was found to be related with MWCNT volume. This method can be applied to all other nanoparticles as far as they can be dispersed in a host transparent matrix.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more