Skip to main content
padlock icon - secure page this page is secure

Phase Transformation of Se/(Cu,In,Ga)/Mo/Glass Thin Films: A Real-Time Synchrotron X-ray Scattering Study

Buy Article:

$107.19 + tax (Refund Policy)

The phase transformation of Se/(Cu,In,Ga)/Mo/glass thin films during annealing in a vacuum on and off state was studied in a real-time synchrotron X-ray scattering experiment. The crystalline CIGS phase is a solid solution of crystalline CIS and CGS phases. The crystalline CIS phase was formed first at lower temperature. By increasing the temperature, the crystalline CIS phase disappeared, while the crystalline Ga2Se3, In2Se3, Cu2In phases grew simultaneously. Finally, the crystalline CIGS phase was formed at higher temperature, while the crystalline Ga2Se3, In2Se3, Cu2In phases disappeared gradually. The behavior of the crystal domain sizes was consistent with the changes of X-ray powder diffraction profiles. The high crystallization temperature of the CIGS phase was attributed to the activation energy barrier for the diffusion of Ga ions into the intermediate CIS phase.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more