Skip to main content

The Influence of Particle Shapes on Strength and Damage Properties of Metal Matrix Composites

Buy Article:

$107.14 + tax (Refund Policy)

The influence of the distribution of particle shapes, locations and orientations on the mechanical behavior of the particle reinforced Metal-Matrix Composite (MMC) is studied through finite element (FE) method under different loading conditions in this investigation. The FE-model with multi-particle is generated through the random sequential adsorption algorithm, with the particles treated respectively as elastic-brittle circular, regular octagon and hexagon and square shape. Ductile failure in metal matrix, brittle fracture of particles and interface debonding are taken into account during the simulations. 2D cohesive element is applied to simulate the debonding behavior of interface. The damage models based on the stress triaxial indicator and maximum principal stress criterion are developed to simulate the ductile failure of metal matrix and brittle cracking of particles, respectively. Simulation results show that the interface debonding dominates the failure process under the loading, while the damage in particle grows at slowest rate compared with those in matrix and interface.

Document Type: Research Article

Publication date: 01 August 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content