
Attempt of Deposition of Ag-Doped Amorphous Carbon Film by Ag-Cathode DC Plasma with CH4 Flow
A simple DC plasma apparatus having large Ag cathode with CH4 flow was used for the attempt to prepare Ag-doped amorphous carbon film. As the gaseous source, CH4 and the additive (N2 or Ar) were used for the plasma process. When N2 was the
additive, the substrate surfaces after the plasma process were electrical conductor although high electrical resistance. The growth rate of the deposits decreased with increasing the amount of N2, and the deposits contained nitrogen. Although the small amount of silver was detected
by XPS, the peak for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. When Ar was the additive, the substrate surfaces after the plasma process were also electrical conductor although high electrical resistance. The growth rate of the deposits was almost
independent of the amount of Ar, and the deposits contained no argon. The small XPS peaks for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. Both the prepared samples had high antibiotic property. The method of this study could be used for the surface
reforming with amorphous carbon coating having electrical conductivity and antibiotic property.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Document Type: Research Article
Publication date: June 1, 2015
- Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Terms & Conditions
- Ingenta Connect is not responsible for the content or availability of external websites