Skip to main content

Covalent Incorporation of SiO2 Nanoparticles in CO2-Based Copolymers: Synthesis, Characterization, Morphology and Property Studies

Buy Article:

$107.14 + tax (Refund Policy)

A new strategy has been developed for covalent incorporation of SiO2 nanoparticles (NPs) in the CO2-based copolymer, poly(propylene carbonate-co-propylene oxide) (poly(PC-co-PO)). The poly(PC-co-PO)-g-SiO2 nanocomposites was prepared by the combination of epoxy-CO2 ringopening polymerization and the condensation reaction of chloride and hydroxyl groups of the polymer and the SiO2 surface. FT-IR and NMR were employed for the characterization of the copolymers as well as nanocomposites. A uniform and spherical core–shell structure of poly(PC-co-PO)-g-SiO2 nanocomposites was demonstrated from TEM and SEM images. An improved thermal property of the polymer matrix with incorporating SiO2 nanoparticles was revealed by TGA study. The grafting of poly(PC-co-PO) considerably prevented the aggregation and improved the dispersibility of SiO2 nanoparticles in toluene.

Document Type: Research Article

Publication date: 01 January 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content