Skip to main content

Dielectric and Conductivity Characteristics of CuCl2 Doped Poly(N-vinyl carbazole) and Its Hybrid Nanocomposite with Fe3O4

Buy Article:

$107.14 + tax (Refund Policy)

Copper(II) chloride (CuCl2) doped poly(N-vinyl carbazole) (PNVC)–ferric oxide (Fe3O4) hybrid composites have been prepared and characterized by Fourier transform infrared spectroscopic studies, UV-Vis spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction analyses and evaluated in regard to dielectric response and ac/dc conductivity characteristics. HRTEM images for CuCl2–(PNVC–Fe3O4) composite indicate the co-existence of both the CuCl2 and Fe3O4 nanoparticles in the composite and characteristic lattice fringes are clearly observed which endorse the formation of thin layer interfaces between Fe3O4 and CuCl2 nanoparticles. The dielectric constants of the CuCl2 doped PNVC and PNVC–Fe3O4 composites increase substantially relative to the corresponding values of the polymer and the polymer composite respectively. Like-wise, the conductivities (ac and dc) are also improved substantially after doping with CuCl2. The dependence of these functional properties on the extent of metal salt loading has been evaluated and a quantitative estimation of the contribution of the grain boundary and resistance parameters has been attempted in terms of Maxwell-Wagner two-layered model.

Document Type: Research Article

Publication date: 01 August 2014

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content