Skip to main content

Aqueous Synthesis of MPA-Capped CdTe Nanocrystals Emitted in Near Infrared with High Quantum Yield

Buy Article:

$107.14 + tax (Refund Policy)

The high luminescent near infrared (NIR)—emitting CdTe nanocrystals (NCs) with 3-mercaptopropionic acid (MPA) as the stabilized molecules had been sucessfully fabricated by a facile and simple water-reflux method. By virtue of the characterizations for the as-prepared MPA-capped CdTe NCs, such as UV-Vis absorption, steady-state photoluminescence (PL), time-resolved PL spectra and PL image, the optical properties, diameters and morphologies of the CdTe NCs were investigated detailedly. With the increase of reflux time, the PL peak wavelength of NCs gradually shifted from red light to NIR spectra range within 7 h, and the PL quantum yield (QY) was increased firstly and then decreased slightly. It was worth noted that the NCs still showed a relative high PL QY of 47% as well as a narrow full width at half maximum (FWHM) of PL spectra even when the NCs emitted at the NIR wavelength of 754 nm. In addition, the average PL lifetime also exhibited an obvious increase as the growth of CdTe NCs due to the formation of thin CdS shell on the surface of CdTe. The PL stabilities for these NIR-emitting NCs (754 nm) in phosphate-buffered saline (PBS) buffer solution with various concentrations ranged from 0.005 to 0.1 M were also checked accordingly, and the results indicated that the as-prepared NIR-emitting CdTe NCs had a satisfied PL stability, implying a potential application in the biological field. Hopefully, all the superiority of these NIR-emitting CdTe NCs, such as high PL QY and PL lifetime, narrow FWHM of PL spectra, high PL stability in PBS solution, would make them to be a good candidate for biological applications in future.

Document Type: Research Article

Publication date: 01 July 2014

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content