Skip to main content

Augmentation Method of Triple Phase Boundary in Thin Film Solid Oxide Fuel Cell via Physical Vapor Deposition

Buy Article:

$107.14 + tax (Refund Policy)

Triple phase boundaries (TPBs) where electrode, electrolyte, and reactant meet altogether were augmented in thin film solid oxide fuel cell when Pt cathode was deposited on yttrium-doped barium zirconate electrolyte (BZY) via sputter. The augmented TPBs were observed to exist as threedimensional structures, which is different from what are known to exist as two-dimensional planes or interfaces, by using energy dispersive spectroscopy (EDS). The permeating phenomenon of sputtered Pt into BZY was found to depend on dc sputtering power. Polarization curves showed increasing tendency of maximum powers in accordance with increasing thickness of Pt cathode and spectra of ac impedances showed decreasing tendency of faradaic resistances. If TPBs were located as an interfacial structure between electrode and electrolyte, oxygen could not diffuse well into TPBs, causing radius of semicircle in impedance spectra to decrease. The results are violating this expectation. As a result, as long as charge transfer resistance is a function of temperature, reactant concentration, activation barrier and TPB length, TPB must be only a factor to affect the results in this experiment.

Document Type: Research Article

Publication date: 01 December 2013

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content