Skip to main content
padlock icon - secure page this page is secure

Crystallization of Amorphous Si Nanoclusters in SiO x Films Using Femtosecond Laser Pulse Annealings

Buy Article:

$106.38 + tax (Refund Policy)

The SiO x films of various stoichiometries deposited on Si substrates with the use of the cosputtering from two separate Si and SiO2 targets were annealed by femtosecond laser pulses. Femtosecond laser treatments were applied for crystallization of amorphous silicon nanoclusters in the silicon-rich oxide films. The treatments were carried out with the use of Ti-Sapphire laser with wavelength 800 nm and pulse duration about 30 fs. Regimes of crystallization of amorphous Si nanoclusters in the initial films were found. Ablation thresholds for SiO x films of various stoichiometries were discovered. The effect of laser assisted formation of a-Si nanoclusters in the non-stoichiometric dielectric films with relatively low concentration of additional Si atoms was also observed. This approach is applicable for the creation of dielectric films with semiconductor nanoclusters on nonrefractory substrates.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more