Skip to main content

Magnetic Properties of TbAl2 Nanometric Alloys

Buy Article:

$107.14 + tax (Refund Policy)

The magnetic properties of nanometric TbAl2 alloys have been investigated. The Curie temperature (T C ) of these nanometric alloys is strongly size dependent and decreases from 103 K for the bulk alloy down to 98 K for the 14 nm alloy, as the particle volume is reduced. This reduction of T C has been explained by a finite-size scaling law of type [T C (D)−T C (∞)]/T C (∞)=−(D/D 0)−(1/νp), with ν = 0.7 and D0 = 2.2a (a, the lattice parameter), in agreement with the three-dimensional Heisenberg model. The size dependence of the coercivity has also been established. An increase of the coercivity from 0.08 kOe (bulk) to 1 kOe for 10 h milled alloy, indicates the crossover from multidomain to single domain behavior around 85 nm, as expected from the estimate of the critical size of monodomain particles. The field dependence of the magnetization indicates a faster thermal reduction of the magnetization of the nanosized alloys (17% in 300 h milled alloy with mean particle size of 14 nm) related to the bulk (3%), in the temperature range between 5 K and 30 K. The results can be explained as a direct consequence of the competing effects of the surface and the purely finite-size effects, in an ensemble of nanometric particles suffering interactions.

Document Type: Research Article

Publication date: 01 September 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content