Skip to main content

Magnetic Properties of Textured CoPd Nanocrystalline Thin Films

Buy Article:

$107.14 + tax (Refund Policy)

CoPd is an important nanomaterial for magnetic and magneto-optic storage of information. In this work, CoPd alloyed thin films are grown via radio frequency magnetron sputtering on silicon, glass and polyimide substrates in a vacuum chamber with base pressure of 5 × 10−8 mbar. The films are nanocrystalline with grain size between 4 and 80 nm. The magnetic properties of thoroughly textured CoPd alloyed thin films are compared to random polycrystalline ones. Magnetization hysteresis loops recorded under fields up to 12 kOe via a home-made magneto-optic Kerr-effect magnetometer reveal strong tendency for perpendicular magnetic anisotropy for the textured film. This anisotropy leads to the formation of well-defined stripe or labyrinthine ferromagnetic domains with the local spins oriented perpendicular to the film plane. The domain patterns and the hysteresis loops are simulated with micromagnetic calculations. Finally, an induced magnetic moment of 0.44 μB/atom is measured for Pd via X-ray magnetic circular dichroism and it is separated into spin and orbital magnetic moment contributions.

Document Type: Research Article

Publication date: 01 August 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content