Skip to main content

Size- and Temperature-Dependent Quantum Confined Dielectric Effect in Colloidal PbSe and CdSe Nanocrystals

Buy Article:

$107.14 + tax (Refund Policy)

A new method is proposed to calculate the Stark shift induced by surface dielectric effect in colloidal nanocrystals. The effective mass approximation model is revised according to quantum confined dielectric effect. LUMO (the lowest unoccupied molecular orbital), HOMO (the highest occupied molecular orbital), band gap and Stark shift are calculated in CdSe and PbSe nanocrystals that bear significantly different physical properties. The calculated results fit well with the experimental data. The calculation of dielectric effect-induced Stark shift indicates that the quantum confined dielectric effect in PbSe and CdSe nanocrystals is size- and temperature-dependent, which is more notable in PbSe nanocrystals with a narrower band gap and results in the gentle variation of quantum confinement energy with particle size.

Document Type: Research Article

Publication date: 01 August 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content